
LArFlow: From 2D images
to 3D space-points

Taritree Wongjirad (Tufts)
Exa.TrkX Workshop

June 4th, 2019

1

Introduction
● Developing convolutional neural network (CNN) to generate 3D point cloud

from 2D LArTPC images
● This work follows the computer vision efforts in dense correspondence
● Discuss

○ Network architecture
○ Data preparation
○ Post-processing
○ Preliminary performance metrics

● Next steps

2

3

Dense pixel correspondence
● Goal of dense pixel correspondence in the computer vision world -- match

regions of one image to another, connecting semantically similar regions

colors indicate what
should be matched

Choy et al. “Universal Correspondence Network” NIPS 2016

Zhou, Krähenbühl et al. “Learning Dense Correspondence via 3D-guided
Cycle Consistency” CPVR 2016

Wei et al. “Dense Human Body Correspondences Using
Convolutional Networks” CPVR 2016 3

4

Dense Pixel Correspondence: Example output

*We use 512 time bin x 512 wires cropped images for training due to technical restraints

enforce same-time tick,
so only wire-direction
flow predicted

matchability = 0
when true target pixel in
dead wires, below
thresh, etc.

in LArTPC
context

4

5

LArTPC pixel correspondence: LArFlow
Network predicts correspondence between pixels (charges) in Y, U, V ADC images
For pixel i in Y plane: the CNN is asked to predict
shift needed to move to pixel 1175 Which is where the corresponding pixel is in U plane

i

Correspondence prediction gives 3D space-point for that charge

f(i)

5

LArFlow network architecture

U

Y

V

conv

CNN

CNN

2D ADC image

concat

encoder

Loss function
𝓛 = λM + F

MU,Ydeconv

deconv FU,Y

MV,Ydeconv

deconv FV,Y

𝓛

For future: enforce 3D consistency
loss between Y->U and Y->V
prediction

(skip connections used)
decoder

6

LArFlow network architecture

U

Y

V

conv

CNN

CNN

2D ADC image

concat

encoder

Loss function
𝓛 = λM + F

MU,Ydeconv

deconv FU,Y

MV,Ydeconv

deconv FV,Y

𝓛

For future: enforce 3D consistency
loss between Y->U and Y->V
prediction

(skip connections used)
decoder

Encoder/decoder has 4 layers
composed of two ResNet
modules before
down-sampling/up-sampling

KEY: Using Sparse
Submanifold convolution

7

Loss
● Smooth L1 loss used (regression loss)

○ Error between true flow and predicted flow
○ Not capping pixels with large differences (sometimes done in the literature to prevent influence

of outlier)

● Only calculate loss on pixels where at least one end of flow has charge
○ Allowing predictions from dead regions in starting image to charge on target region and

vice-versa
○ These harder pixels allowed as first results showing network was getting these cases fairly

well even though such cases were not included in calculated loss

8

Data preparation
● Images preparation:

○ Noise filtering
○ pulse finding + zero suppression
○ Deconvolve wire response

■ Accounting for electronics response + expected induced signal
○ Downsample in time (summed) by factor of 6

● 3D consistent cropping
○ Full size: 3456 (wire) x 6448 (ticks)
○ Downsampled size: 3456 x 1008 -- both dimensions about 3 mm
○ Cropped into 832 wire x 512 ticks (24 images per plane)

9

Data preparation
● Images preparation:

○ Noise filtering
○ pulse finding + zero suppression
○ Deconvolve wire response

■ Accounting for electronics response + expected induced signal
○ Downsample in time (summed) by factor of 6

● 3D consistent cropping
○ Full size: 3456 (wire) x 6448 (ticks)
○ Downsampled size: 3456 x 1008 -- both dimensions about 3 mm
○ Cropped into 832 wire x 512 ticks (24 images per plane)

● 220k training images, 40k validation images
○ Simulated images -- truth used to produce labels

10

Training
● First passes
● Training network to project

charge on Y wire to charge
on U wire

● Accuray Curves measure
fraction where
|Predicted -true|
projected U plane pixel is

○ <10 pixels
○ <5 pixels
○ <2 pixels

● For validation sample
○ <10: 78%
○ <5: 60%
○ <2: 32% 11

● Visualize how the network is doing by projecting source image
into target image (masking out matchibily=0 pixels)

Visualization

12

Visualization

What the U-plane ADC is Taking y-plane charge, and moving it to predicted
u-plane location

13

Visualization

What the U-plane ADC is Taking y-plane charge, and moving it to predicted
u-plane location

Getting many mappings mostly right
But busy regions are difficult

In the V-plane, these regions might be less
cluttered if tracks are not truly 3D co-located --
so can choose to use Y->U or Y-V prediction

14

Visualization

What the U-plane ADC is Taking y-plane charge, and moving it to predicted
u-plane location

More errors (investigating why)

15

Visualization

What the U-plane ADC is Taking y-plane charge, and moving it to predicted
u-plane location

Note: projecting y-pixels into dead regions in
the U-plane where no charge is seen -- network
is predicting track path in these regions

Portion here is missing
because Y-plane is dead

16

3D View

White: reco larflow points
Red lines: MC truth tracks (no space-charge) which 1) cross TPC + 2) visible in image
Blue lines: MC truth tracks (no space-charge) which 1) cross TPC
Green line: MC truth track for neutrino

17

3D View

18

Performance Metric (for MC)

19

Performance Metric (for MC)

Have plans to use
cosmic muon data to
evaluate similar metrics

20

Post-processing

21

W/ track/shower topology labeling

22

w/ DL-based clustering (Mask-RCNN)

23

First use: false-vertex rejection

24

First use: false-vertex rejection

25

Deployment
● With sparse-operations plan is to deploy on single CPU nodes (on FermiGrid)
● First tests on laptop

○ Dual flow prediction: 0.1 seconds (ave use of about 1.2 cores, 1.1 GB)

● With need to split image and merge output of net, non-network processing is
now the bottleneck (not considering IO)

26

Next Steps/Open Questions
● Network optimization

○ Depth and width not explored -- memory limited when using dense conv. operations. With
sparse operations can explore more with available hardware

● Visibility prediction
○ Currently off (again due to memory constraints). Now can train.

● Loss improvements
○ 3D consistency: Have redundant predictions. Flow from one plane to the two planes should

produce the same 3D position. Can penalize based on difference in distance. Will it help?
○ Instead of regression, use classifier type losses with each output class being some flow --

seen examples where these are better at learning multi-modal distributions

● Up-weight, up-sample “difficult” examples -- where must decide between two
possible regions, areas of large intersection, images with many EM showers

27

Summary
● Using CNNs to provide low-level 3D hits as a foundation for point-cloud-based

reconstruction techniques (“traditional” and ML-based)
● Good enough accuracies for early uses in cosmic rejection
● Use of sparse submanifold convolutions key in being able to train with large

batch sizes and deploy in reasonable time -- opens up exploration of bigger
network

28

Showing work of
group members:

Ralitsa Sharanova
(post-doc)

Katie Mason
(grad)

Joshua Mills
(grad)

